3、巨型精密机械
天文仪器与其他精密机械大的不同是口径越大反而精度要求越高。因此“巨型”的天文仪器不仅要求与高精度的小型仪器一样追求高精度,还与飞机、桥梁、火箭、轮船、汽车一样要追求结构的合理优化及可靠性。另外天文仪器还有许多特殊性,如低速高精度跟踪大型特殊的机架及轴系、大口径超薄光学镜面的支撑及高精度面形的维持等,这些与其他光学仪器和精密机械相比,要求至少高一个数量级。可以说天文仪器一直在精密仪器与精密机械中是前沿的技术。
天文仪器与巨型精密机械领域又是多学科交叉领域,它涉及天文学、光学、精密机械、测试技术、结构力学、弹性力学、材料工程、信息工程、热力学等学科,它是本本世纪富有挑战的高技术领域之一。研究领域涉及巨型望远镜结构设计、空间望远镜结构设计、巨型精密轴系和低速高精度驱动技术、超薄光学镜面支撑技术、镜面拼接技术、薄镜面主动变形控制技术、纳米微位移驱动技术、新型材料及加工工艺技术等。发展起来的精密驱动技术、纳米微位移驱动技术、高精度力促动器技术等可广泛应用于国防、航空航天和民用。
南京天光所结合正在承担的国家重大科学工程项目“大天区面积多目标光纤光谱望远镜(LAMOST)”、国家自然科学基金重大项目“空间太阳望远镜(SST)”、中科院知识创新工程重大预研究项目“大射电望远镜(FAST)预研究”等开展了多方面有特色的研究。主要内容有:
1. 巨型望远镜结构设计:针对巨型望远镜大尺寸、高精度、低速度的特点,开展新概念、新结构、新工艺研究,集成现有的高新技术,研究发展必须的高新技术。
2. 空间望远镜结构设计:针对空间望远镜发射过程中的超重、运行过程中的失重、大温差、轻量化的特点,开展新概念、新结构、新材料新工艺的研究,集成现有的高新技术,发展必须的高新技术。
3. 巨型精密轴系和超精密驱动技术:巨型精密轴系的设计、加工制造技术、误差产生机理和检测方法的研究,低速超精密传动技术、加工制造技术、传动误差产生机理和检测方法的研究。
4. 超薄光学镜面支撑技术:超薄光学镜面保形支撑技术、工艺和方法的研究,包括联接接口技术的研究。
5. 薄镜面主动变形控制技术:薄镜面主动光学的关键技术之一,包括力促动器设计、加工工艺、联接接口技术和机电一体化的研究。
6. 纳米微位移驱动技术:拼接镜面主动光学及光干涉延迟线关键技术之一,机械式微位移技术、压电陶瓷式微位移技术及机电一体化研究。
7. 新型材料及加工工艺:新材料在天文仪器上的应用(如新反射面材料)、加工工艺、材料特性的研究。
4、计算机与自动控制技术
作为3C时代(Computer计算机/Control控制/Communication信息交流)宠儿的计算机技术和自动控制技术是天文仪器所涉及到的主要学科中发展快和活跃的一门,其应用前景无可限量。一些新颖的天文望远镜总体构思别树一帜,如我所承担的国家重大科学工程项目LAMOST望远镜就是一例,要求薄镜面主动光学控制技术、拼镜面主动光学控制技术和高精度机架跟踪等多项当今天文仪器顶尖控制技术集中在一块反射施密特改正板上加以实现,这种控制集成在国际天文仪器领域尚无先例。其中主动光学加力精度控制在0.05%以内,小可控力不超过50毫牛;而共焦控制位移精度在50纳米(RMS)以内。这些要求都达到了当代国际先进水平。另外,这架望远镜的跟踪性能要求经导星闭环、跟踪3小时中误差不超过0.23角秒(RMS)。这项指标将执我国地面天文望远镜跟踪精度之牛耳,也将使这架望远镜在这一指标上跨入国际水平。所有这些挑战已历史地落到了我们计算机和自动控制工程师的肩上。目前,在天文仪器专家中有一种倾向性的看法,即软件职能及所占的比例越来越大,在某些情况下,进一步提高机械精度捉襟见肘,此时,新颖的软件校准技术应运而生。由此,计算机技术和自动控制技术在天文仪器领域的研究中的作用和地位便可见一斑。
本研究方向就是根据天文仪器研制的总体要求,深入研究相关的计算机技术和自动控制技术的理论和方法,应用当今自动化和计算机时代提供的种种先进手段,确保实现天文仪器的设计目标,为探索一条适合于我国国情的天文仪器控制领域发展的道路作贡献,为我国在天文仪器领域挤入国际先进行列而奋斗。本研究方向所涉及的学术内容,几乎可以包罗当今世界的各种划时代的前沿技术和理论;诸如,现代控制论、神经网络理论技术、微电子理论和技术、纳米技术、分布式数据库、嵌入式控制、诊断理论和技术、面向对象的软件编程和跨平台软件技术和系统集成等。
计算机和控制技术发展突飞猛进,今天的先进很快就是明天的落后,我们应该审时度势不断地培养年轻人、以造就适应3C时代发展需要的新一代控制技术骨干。
中国科学院国家天文台南京天文光学技术研究所研究生教育新型材料及加工工艺类似问题答案