作为一名工科学生,本科期间建立的基本知识体系相当重要,尤其是将来确定从事本专业的同学,这个知识体系将决定我们在材料学领域能做多远。下面介绍的几门课是材料学的核心课程,其中工科高等数学是深入学习所有课程的基本工具,一定要掌握好;而普通化学、物理化学、有机化学、材料力学性能,是专业基础课程,这是材料专业的理论基础,是学习专业方向课的基础;而高分子物理、高分子化学、材料热处理原理等课程是专业课,分别引导大家进入材料学不同分支的学习,是将来选择研究生方向的基础。可见我们所学的课程是构成我们知识体系的基石,是环环紧扣、层层深入的,那么如何才能学好这些课程呢?下面我逐个介绍一下。
普通化学的研究范围广,涉及许多领域。但作为化学专业的基础课程,普通化学主要是对基础的化学原理进行比较系统的学习,使同学们掌握有关化学方面的基本概念、定律和理论;然后对化学的学科前沿和发展趋势进行一个简介,使我们对该学科的新发展有一个初步了解,激发求知欲。
普通化学的实验性强,也有自身的理论。普通化学设有理论课和实验课,它们是一个整体,是互相补充和完善的,学习中不能偏废。辩证的来说,实验可以加深感性认识,而理论可以加深对感性认识的理解。
物理化学作为专业基础课,也是将来的考研课,重要性不言而喻。这门课开设在大二上学期。物理化学研究的范畴主要分以下三个:化学热力学--研究化学平衡规律;化学动力学(以及传输过程)--研究化学反应速率规律;物质结构--研究物质结构及其性质的关系。与从前的学习对比较为显著的一点是对很多问题的探讨都上升到了定量的角度。材料专业的课程设置环环相扣,到这时我们已经对自己在学什么、将来要做什么有了一定的了解,知识也更加系统化了。
物理化学用到的概念、符号、公式很多,公式使用条件也严格,而且逻辑性强。比如从特殊的现象中总结出一般的规律,研究理想的模型、平衡态推广到真实的情况,由宏观世界深入到微观世界的研究等等。学的多了,才会发现,原来我们的人类世界、社会发展竟然也符合其中的许多规律。“熵”是描述化学体系不稳定性的概念,可以叫做“混乱度”。每当化学反应发生要产生新的物质时,体系的熵值增大,即所谓的“熵增原理”。这种变化人类历史规律十分相似。新的朝代总是诞生于上一个朝代末期的乱世纷纭,好比时代这个大体系的熵值猛然增加,于是旧时代消失,新时代开始。又如“勒-沙特列原理”--如果改变影响平衡的条件之一(如温度,压强,以及参加反应的化学物质的浓度),平衡将向着能够减弱这种改变的方向移动。这个趋势是不是比较眼熟?对了,这不正是革命者们所说的“哪里有压迫,哪里就有反抗”么?先人称理科知识为“格致”--格物致知:“格,至也。物,犹事也。致,推极也,知,犹识也。”研究一门学科而能即物穷理,凡事都能弄明白,探究竟,这就是物理化学的魅力所在。
有机化学这门课,说好学也好学,说难也挺难。说它好学,是因为这门课从某种程度来说,是高中化学的延伸,对于高中化学基础好的同学来说,接受比较快,上手也比较容易。与高中时的学习相比,我们在这门课上学到的知识,更加系统和深入了。例如烷、烯、炔、芳环化合物、卤代烷、醇和醚、醛和酮、羧酸、硝基化合物等方面的内容,高中阶段皆有涉及,因此新增的内容除了一些略微复杂的人名反应,更重要的是对反应机理的探讨,即从分子、电子的角度,对化学反应进行分析。如路易斯酸碱是怎样的概念?该反应是亲核反应,还是亲电反应?有机化合物分子中原子的排列顺序、立体位置,化学键的接合状态,分子中电子的分布状态,以及他们是如何影响该有机化合物的物理与化学性质的。
从高深繁复的科研领域前沿到切实发生在我们身边的日常生活,有机化学无处不在。近年来闹得沸沸扬扬的三鹿奶粉事件中,致病元凶三聚氰胺的名字以及其化学分子式因反复出现于各大媒体而广为大家熟知。那么三聚氰胺为什么会对人体造成如此危害?是由于自身的化学性质还是与人体内的其他物质发生了什么有害的反应?你可知三聚氰胺其实是工业上一种相当重要的原料?还有,获得08年诺贝尔化学奖的研究课题“荧光蛋白”可以与三鹿事件联系起来,用于制作便于随时随地检测牛奶中各种有毒物质的试纸,这些你又可曾了解?别急,有机化学会帮助你由浅入深的了解这一切。
材料性能学这门课主要关注的对象是工程结构材料关键的问题--力学性能,如我们平时常常听到的强度、硬度、刚度、塑性、韧性、断裂、疲劳、蠕变等。这门课的学习分为两个方面,一是金属的力学性能,二是复合材料的力学性能。材料的力学性能测试在以后我们材料科学与工程大专业下面的任何一个方向的学习中,都是不可能跳过的一步。
这门课程建立在材料力学的基础之上,区别在于“性能”两字。力学性能在工程结构,如飞机、桥梁,以及一些部件如齿轮、轴承等的设计中往往是重要的指标。而新材料制得以后,往往需要通过力学性能的测试,来确定它是否能从研制阶段,走到实际生产应用中去,以满足实际的需要。此外,一旦工程结构材料发生断裂失效,一般来说究其原因都在于其力学性能不能满足要求。部分产品对材料的综合性能有非常高的要求,如高强度,高刚度,高韧性,低密度等等。我们重点需要掌握的是这些力学性能指标的意义、测试方法和失效分析的一些工具方法等等。举个例子来说,某地发生了飞机坠毁事件,通过断口观察等一系列的测试结果,得出事故发生的原因。还有十余年前京畿著名的东方红化工厂爆炸事件,亦出动了大批材料力学及失效分析方面的专家进行事故原因及责任评估。而且,材料力学的意义不仅在于总结事故的经验教训,更重要的是在于将这些经验运用于防患未然。目前我国正大力推行的大飞机计划中,用于我国自制的大飞机的蒙皮骨架复合材料的受力分析就是极为重要的课题,千万出错不得。材料力学之重要,窥此一斑可见全貌。
材料工程基础随着当代新材料的发展和对传统材料的要求的提高,材料制备工程的成材技术已成为实现高性能材料应用的基础。本课程是针对材料科学与工程专业二年级学生需要而开设的,它首次将三大材料的制备科学与技术融为一门课程。全书围绕金属、陶瓷、高分子复合材料等三大材料成材过程的技术原理、工艺和方法,论述了材料制取合成、材料加工成形、材料改性与表面加工以及材料复合,使我们在获得较广泛的材料工程基础知识的同时,掌握材料制备过程中的基本科学原理和技能,从而能根据材料的性能、结构与应用要求,提出材料制备加工的方案与方法。金属材料的处理技术首先要从金属的冶炼开始,根据不同的金属元素以及对于同种金属的不同性质要求,需要不同的冶炼方法,包括火法冶金、湿法冶金和电冶金等等;其后,就是对冶炼出的金属材料以改变物理形态为主的加工处理,诸如锻造、铸造、轧制等等。关于高分子复合材料,首先是用于符合的高分子原材料各自的制备,包括加入各种添加剂、通过升降温度的热处理进行改型等;然后便是不同材料之间的不同形式的复合方法,比如弥散复合、颗粒复合、纤维增强复合等。
根据材料的成分和组织结构,该领域范围涉及到金属材料、高分子材料和复合材料;根据从事材料工程技术人员研究和工作性质,该领域范围又可概括为:从事新材料的研究和开发、材料的生产工艺和设备的开发和设计、材料的特性分析和试验、材料成品的检测与质量控制、材料制品的加工及改性、材料制造业的管理和技术经济分析等。需要我们在学习前对金属学、加工基本方法有基本的培养和重点的掌握。
材料科学基础讲授的是金属学方面一些基本的概念和原理,如金属和合金的晶体结构、相图、金属的凝固、塑性变形、金属的缺陷、扩散、相变等。或许这些概念在学起来的时候会让人觉得繁琐而枯燥,但正是这些作为金属学基础之基础的理论知识决定了金属学这门课程在实践中的应用价值。金属的相图向来被认为是金属学中复杂的知识段之一,但是只要学得深入一点你就会明白相图理论的价值有多么重要。同样是铝合金材料,小到你家阳台的铝合金框架,大到神七载人航天飞船的超轻质铝合金,其性能区别在各自所用铝合金材料的相图中即可一览无余。再举一个例子,爱看武侠小说的男生们经常会对书中的种种神兵利器艳羡不已,屠龙刀倚天剑,不一而足。那么为什么同样一块好料,在能工巧匠手里就能被打造成为绝世神兵,到了我们手里就百分之二百炼成废铜烂铁?你会说“技术”,看书看得深一点的会说“淬火是关键”,没错,这“淬火”的学问就是我们金属学中“金属的凝固”所关注的知识。
现代材料研究方法主要采用仪器分析的手段,它们按信息形式可分为图象分析法和非图象分析法。图像研究法是材料结构分析的重要研究手段,主要分为形态学和体视学研究。形态学是研究材料中组成相的几何形状及其变化,进一步探究它们与生产工艺及材料性能间关系的科学。体视学是研究材料中组成相的二维形貌特征,通过结构参数的测量,确定各物相三维空间颗粒形态和大小以及各相百分含量。非图像分析法分为衍射法和成分谱分析,前者主要用来研究材料的结晶相及其晶格常数,后者主要测定材料的化学成分。衍射法包括X射线衍射、电子衍射和中子衍射等三种分析方法。它的成分谱用于材料的化学成分分析。成分谱种类很多,有光谱,包括紫外光谱、红外光谱、荧光光谱、激光拉曼光谱等;色谱,包括气相色谱、液相色谱、凝胶色谱等;热谱,包括差热分析仪、热重分析仪、示差扫描量热计等;此外,还有原子吸收光谱、质谱等。研究材料必须以正确的研究方法为前提。研究方法,从广义来讲,包括技术路线、实验技术、数据分析等。具体来说,就是在充分了解所研究对象所处的现状的基础上,根据具体目标,详细制定研究内容、工作步骤及所采用的实验手段,并将实验获得的数据进行数学分析和处理,后得出规律或建立数学模型。其中,技术路线的制定是至关重要的,实验方法的选择也是非常关键的。譬如说,虽然制定出完整的技术路线,但若没有相应的实验方法或先进的测试手段与之对应,则难以达到预期的目的;反过来,若仅有先进的测试手段,而没有正确的技术路线,也同样难以达到预期目的;两者相辅相成,缺一不可。
我系开设的高分子化学课程,包括绪论、自由基聚合、自由基共聚合、离子聚合和配位聚合、逐步聚合反应、聚合方法和聚合物化学反应,涵盖了高分子化学课程的各个部分。总体来说,高分子化学课程的重点在于解决聚合反应的问题,自由基聚合、自由基共聚和逐步聚合是课程的重中之重,犹以解决聚合速率、平均聚合度、聚合度微观结构、共聚物组成等的影响因素和控制方法问题为总体目标。除单体外,对引发剂、催化剂、链转移剂、阻聚剂、乳化剂、分散剂等及其作用也应给予相当重视。特别是对于有志于高分子材料这一专业的同学,将来多数会工作于工业研究所或者工厂、公司的研究部门,因此需要尤为注意在高化课程中打好理论知识的基础,将来在岗位上才可能切合实际地应用所学理论开展工作。
根据经验规律,想在高分子化学这门课程上获得好分数是很难的(对平时不认真学习的同学,期末考试时想通过“突击”考及格简直是天方夜谭)。当然,学习这门课程并不仅仅是为了考试及格或者得到一个漂亮的分数,而是为了把这门课本身学好--这就更加难上加难了……
高分子物理是研究高分子的结构、性能及其相互关系的学科,它与高分子材料的合成、加工、改性、应用等都有非常密切的内在联系。因为只有掌握了高分子结构与性能之间的内在联系及其规律,才能有的放矢地指导高分子的设计与合成,合理地选择和改性高分子材料,并正确地加工成型各种高分子制品。高分子物理课程建立在物理化学、高分子化学、材料力学等课程的基础之上,同时又是高分子材料、高分子成型原理与工艺等课程的基础,是材料学院高分子材料专业本科生必修的重要的专业基础课之一,是从事高分子材料研究和开发前必备的理论知识。任何从事与塑料、橡胶、人造纤维、涂料和粘合剂等领域相关的工作或研究的人员,都必须具备高分子物理的基本知识。由于高分子材料的制备、性能表征和测试、材料的加工和应用等,在各行各业都会有不同程度地涉及,因此高分子物理也可作为化学化工类非高分子专业本科生的选修课程,以拓宽专业面,了解基本的高分子科学知识。
专业名称 | 开设学校 | 学制 | 地址 |
---|---|---|---|
材料科学与工程 | 抚顺师范高等专科学校 | 2 | -- |
材料科学与工程 | 江苏建筑职业技术学院 | 3 年 | -- |
材料科学与工程 | 山东交通学院 | -- | -- |
材料科学与工程 | 徽州师范专科学校 | 四年 | -- |
材料科学与工程(金属材料工程) | 湖北汽车工业学院 | -- | -- |
材料科学与工程(高分子材料成型) | 湖北汽车工业学院 | -- | -- |