1.理解函数的概念,掌握函数的表示法,能够正确建立简单应用问题中的函数关系.
2.了解函数有界性、单调性、周期性和奇偶性的概念,并能熟练分析函数图形特征.
3.理解复合函数、分段函数、反函数以及隐函数的概念.
4.掌握基本初等函数的定义、性质以及图形特征,了解初等函数的概念.
5.理解极限、单侧极限的定义及其之间的相互关系.
6.熟练掌握极限的性质及四则运算法则.
7.熟练掌握并运用极限的两个存在性准则以及两个重要极限.
8.理解无穷小量、无穷大量的定义及其之间的关系,掌握无穷小量阶的比较方法,掌握极限与无穷小量的关系,能够正确利用等价无穷小量求解极限问题.
9.理解函数连续、单侧连续的概念及其之间的关系,能够熟练找出函数的间断点并判断其类型.
10.了解连续函数的性质和初等函数的连续性,理解并能熟练应用闭区间上连续函数的性质(有界性、大值和小值定理、介值定理).
2020年浙江财经大学硕士研究生招生初试函数、极限、连续类似问题答案