导数和微分的概念导数的几何意义函数的可导性与连续性之间的关系平面曲线的切线与法线导数和微分的四则运算基本初等函数的导数复合函数、参数方程确定的函数和隐函数的导数高阶导数微分中值定理洛必达(L'Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的大值与小值
考试要求
1. 理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义,会求平面曲线的切线方程和法线方程.
2. 掌握基本初等函数的导数公式.导数的四则运算法则及复合函数的求导法则,会求分段函数的导数会求参数方程确定的函数与隐函数的一阶导数.
3. 了解高阶导数的概念,会求简单函数的高阶导数.
4. 了解微分的概念,导数与微分之间的关系,会求函数的微分.
5. 理解罗尔(Rolle)定理,拉格朗日(Lagrange)中值定理.掌握这两个定理的简单应用.
6. 会用洛必达法则求极限.
7. 掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、大值和小值的求法及其应用.
8. 会用导数判断函数图形的凹凸性,会求函数图形的拐点和渐近线
(水平渐近线与垂直渐近线).
9. 会画简单函数的图形.三、一元函数积分学
考试内容
原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿一莱布尼茨(Newton-Leibniz)公式不定积分和定积分的换元积分法与分部积分法反常(广义)积分定积分的应用
考试要求
1. 理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元积分法和分部积分法.
2. 了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数,掌握牛顿一莱布尼茨公式以及定积分的换元积分法和分部积分法.
3. 会利用定积分计算平面图形的面积与旋转体的体积.
4. 了解无穷区间的反常积分的概念,会计算无穷区间的反常积分.四、多元函数微积分学
考试内容
多元函数的概念二元函数的几何意义二元函数的极限与连续的概念多元函数偏导数的概念与计算多元复合函数的求导法与隐函数求导法二阶偏导数全微分多元函数的极值和条件极值、大值和小值二重积分的概念、基本性质和计算
考试要求
1. 了解多元函数的概念,了解二元函数的几何意义.
2. 了解二元函数的极限与连续的概念.
3. 了解多元函数偏导数与全微分的概念,会求具体的多元函数一阶、二阶偏导数,会求抽象的多元复合函数一阶偏导数会求全微分,会求多元隐函数的一阶偏导数.
4. 了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件.掌握多元函数极值、大值和小值的求法及其应用.
5. 了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标.极坐标).
2020年江西农业大学硕士研究生初试元函数微分学考试内容类似问题答案