考试内容:数列极限、函数极限、函数的连续性和一致连续性、闭区间上连续函数的性质。
考试要求:
(1)掌握函数的特殊性质:奇偶性、单调性、周期性、有界性等;
(2)掌握各种极限的定义(与语言)以及如下性质与重要定理:唯一性、有界性、保号性以及四则运算、单调有界定理、Cauchy收敛准则、迫敛性(两边夹法则、夹挤原则)原理、两个重要极限;
(3)掌握数列极限与函数极限的无穷大(小)量的基本概念与基本性质;
(4)掌握连续性的概念及间断点的分类,掌握初等函数的连续性;
(5)掌握闭区间上连续函数的如下基本性质:有界性、值性、介值性(零点定理)、一致连续性。
2020年杭州电子科技大学硕士研究生极限与连续类似问题答案