①理解空间直线、平面位置关系的定义,并了解如下的公理和定理:
●公理 如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内.
●公理 过不在同一条直线上的三点,有且只有一个平面.
●公理 如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.
●公理 平行于同一条直线的两条直线互相平行.
●定理 空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.
②以立体几何的上述定义、公理和定理为出发点,理解空间中线面平行、垂直的有关性质与判定定理.
理解以下判定定理:
●如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.
●如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行.
●如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直.
●如果一个平面经过另一个平面的垂线,那么这两个平面互相垂直.
理解并能够证明以下性质定理:
●如果一条直线与一个平面平行,那么经过该直线的任一个平面与此平面的交线和该直线平行.
●如果两个平行平面同时和第三个平面相交,那么它们的交线相互平行.
●垂直于同一个平面的两条直线平行.
●如果两个平面垂直,那么一个平面内垂直于它们交线的直线与另一个平面垂直.
③能证明有关点、直线、平面之间的位置关系的简单命题.