1.调查的组织和实施。
2.概率抽样与非概率抽样。
3.数据的预处理。
4.用图表展示定性数据。
5.用图表展示定量数据。
6.用统计量描述数据的水平:平均数、中位数、分位数和众数。
7.用统计量描述数据的差异:极差、标准差、样本方差。
8.参数估计的基本原理。
9.一个总体和两个总体参数的区间估计。
10.样本量的确定。
11.假设检验的基本原理。
12.一个总体和两个总体参数的检验。
13.方差分析的基本原理。
14.单因子和双因子方差分析的实现和结果解释。
15.变量间的关系;相关关系和函数关系的差别。
16.一元线性回归的估计和检验。
17.用残差检验模型的假定。
18.多元线性回归模型。
19.多元线性回归的拟合优度和显著性检验。
20.多重共线性现象。
21.时间序列的组成要素。
22.时间序列的预测方法。
2019年深圳大学数学与统计学院硕士研究生入学考试大纲、参考书目-数学分析考试的基本题型类似问题答案