f=ml2 /EI, f=Pl3/3EI, f=ql4/8EI(悬臂梁)
f=Pl3/48EI, f=5ql4/384EI(简支梁)
f=ml2 /EI, f=Pl3/3EI, f=ql4/8EI(悬臂梁)
f=Pl3/48EI, f=5ql4/384EI(简支梁)
f=ml2 /EI, f=Pl3/3EI, f=ql4/8EI(悬臂梁)
f=Pl3/48EI, f=5ql4/384EI(简支梁)
(1) 基本要求
1. 明确应力状态的概念及其研究方法
2. 掌握平面应力状态下,解析法和图解法求任意斜截面上的应力;熟练掌握主应力和大剪应力的计算
3. 几个重要的概念:一点应力状态,平面应力状态,主平面,主单元体,主应力
4. 广义虎克定律.重点掌握平面应力状态下的广义虎克定律
5. 强度理论:第一、第三和第四强度理论
6. 运用强度理论对复杂受力构件进行强度校核
(2) 熟练运用的公式
(三向应力状态)
(平面应力状态)
(三向应力状态)
(平面应力状态)
(三向应力状态)
(平面应力状态)
(1) 基本要求
1. 掌握构件组合变形时强度计算的基本原理,叠加原理
2. 正确判定构件在组合变形时的危险截面、危险点及危险点处应力值的计算
组合变形:拉伸或压缩与弯曲的组合;偏心压缩;扭转与弯曲的组合(无扭转的组合变形,危险点处于单向应力状态;凡有扭转的组合变形,危险点处于复杂应力状态)
组合变形:拉伸或压缩与弯曲的组合;偏心压缩;扭转与弯曲的组合(无扭转的组合变形,危险点处于单向应力状态;凡有扭转的组合变形,危险点处于复杂应力状态)
组合变形:拉伸或压缩与弯曲的组合;偏心压缩;扭转与弯曲的组合(无扭转的组合变形,危险点处于单向应力状态;凡有扭转的组合变形,危险点处于复杂应力状态)
3.根据危险点处的应力状态,正确选择并建立强度条件,掌握构件组合变形强度计算的一般步骤
(2) 熟练运用的公式
(1) 基本要求
1. 掌握杆件变形能的计算:轴向拉压、圆轴扭转、梁的弯曲
2. 运用卡氏定理和单位载荷法(莫尔定理)计算结构指定点的位移
3. 用力法求解静不定结构(一次静不定问题)
(2) 熟练运用的公式
(1) 基本要求
1. 理解失稳、临界力、临界应力、长度系数、柔度等基本概念
2. 计算细长杆临界力、临界应力的欧拉公式
3. 欧拉公式的适用范围,临界应力总图
4. 压杆稳定的实用计算;稳定条件;稳定计算
(2) 熟练运用的公式
μ值:μ=1(两端铰支);μ=0.5(两端固定);μ=2(一端固定,另一端自由);μ≈0.7(一端固定,另一端铰支)。
= cr/P≥ st
μ值:μ=1(两端铰支);μ=0.5(两端固定);μ=2(一端固定,另一端自由);μ≈0.7(一端固定,另一端铰支)。
= cr/P≥ st
μ值:μ=1(两端铰支);μ=0.5(两端固定);μ=2(一端固定,另一端自由);μ≈0.7(一端固定,另一端铰支)。
= cr/P≥ st
第二部分 流体力学(占总分的1/3,共50分)
一、流体的物理性质及流体静力学
(1)流体定义及连续介质假定
(2)流体的密度和粘性
(3)作用在流体上的力
(4)流体静压特性及静止流体的压力分布
(5)静止流体作用在壁面上的力
二、流体力学的基本方程
(1)描述流体运动的两种方法
(2)流体运动中的基本概念
(3)连续性方程
(4)运动微分方程
(5)伯努利方程
(6)动量积分方程
三、管流和边界层概述
(1)粘性流体运动的两种流态
(2)圆管中的层流运动
(3)圆管中的湍流流动
(4)管流水力计算
(5)边界层概述
四、孔口出流与缝隙流动
(1)薄壁孔口的定常出流
(2)厚壁孔口的定常出流
(3)平行平板之间的缝隙流动
五、相似理论
(1)相似理论