1、整数的可除性
整除的性质、带余数除法、辗转相除法,大公因数和小公倍数的基本理论,算术基本定理,函数[x]、{x}的基本理论。
2、不定方程
一次不定方程有解的充要条件,解一次不定方程的方法;不定方程的正整数解的表示方法;不定方程无正整数解的证明。
二次剩余与二次非剩余的定义,二次剩余与非剩余与同余式解的关系,欧拉判别法(判别a是否是模 的二次剩余的方法);勒让德符号的定义,勒让德符号的性质及推导,几个基本勒让德符号的值,二次互反律,利用勒让德符号判断二次同余式有无解,雅可比符号的定义和性质,雅可比符号与勒让德符号的关系,利用雅可比符号判定二次同余式无解;二次同余式有解的充分条件和解数,有解时模两种情况的解的形式,模不太大时二次同余式的解法。
四、样 题
3、同余
同余的定义,同余与整除的关系,同余的基本性质及其在算术中的应用;剩余类与完全剩余系的定义和性质结构;欧拉函数与简化剩余系;费马、欧拉定理与威尔逊定理的推导和应用。
4、同余式
同余式及其解的定义,利用完全剩余系及费马小定理解同余式,同余式的常用变形,解一次同余式的两种方法;孙子定理的推导,利用孙子定理解一次同余式组;同余式的同解定理,一般同余式的解的形式;模为素数的高次同余式的等价定理,其有解的充要条件的定理和推论。
5、二次同余式与平方剩余
6、原根与指标
指数和原根的概念,指数的基本性质;模存在原根的条件,模的原根的相关性质,求模的全部原根;指标和指标组的概念、性质,会构造模的指标表,模m的 次剩余和非剩余的概念,模m的 次剩余的充要条件;模及合数模的指标组。
2019年贵州师范大学大数据与计算机科学学院初等数论复试大纲考查范围类似问题答案