1. 引论.Euler定理,拓扑等价,曲面,抽象空间,一个分类定理,拓扑不变量。
2. 拓扑空间及连续映射. 开集与闭集,连续映射,充满空间的曲线,Tietze扩张定理
3. 拓扑空间的紧致性与连通性. 欧氏空间的有界闭集,HeineBorel定理,紧致空间,乘积空间,连通性道路连通性
4. 粘合空间.Mbius带的制作,粘合拓扑,拓扑群,轨道空间
5. 拓扑空间的基本群. 同伦映射,拓扑空间的基本群,计算,同伦型,Brouwer不动点定理,平面的分离,曲面的边界,复叠空间及其基本性质
6. 单纯剖分. 空间的单纯剖分,重心重分,单纯逼近,复形的棱道群,轨道空间的单纯剖分
7. 曲面. 分类,单纯剖分与定向,Euler示性数,剜补运算,曲面符号
8. 单纯同调. 闭链与边缘,同调群,单纯映射,辐式重分,不变性
9. 映射度与Lefschetz数.球面的连续映射,EulerPoincaré公式,BorsukUlam定理,Lefschetz不动点定理
2018年中国科学院大学硕士研究生入学考试数学专业综合考试大纲拓扑基础类似问题答案