考试内容:
实数集的性质,实数集的上(下)确界。
实数完备性的基本定理。
函数的定义,函数的各种表示方法,基本初等函数的定义、性质及图像,复合函数、反函数、有界函数、周期函数、奇函数和偶函数、单调函数、初等函数的定义。
数列和函数极限的定义,数列和函数极限的性质。
数列的单调有界定理,数列和函数收敛的柯西收敛准则,归结原则。
两个重要极限及其应用。
无穷小量与无穷大量的概念及其阶的比较。
函数连续的概念,函数的间断点及其分类,复合函数与反函数的连续性。
闭区间上连续函数的性质。
函数的一致连续性的概念及相关结论。
考试要求:
掌握实数集的有序性与稠密性,掌握实数集的上(下)确界的定义,会确定一些常见集合的上(下)确界。
掌握实数完备性六个基本定理:确界原理、单调有界定理、区间套定理、有限覆盖定理、聚点定理和柯西收敛准则。
掌握函数的定义,函数的各种表示方法;掌握基本初等函数的定义、性质及图像,掌握复合函数、反函数、有界函数、周期函数、奇函数和偶函数、单调函数、初等函数的定义。
掌握数列极限的定义和函数极限的定义,掌握数列和函数极限的唯一性、有界性、保号性、迫敛性、不等式性质以及四则运算性质,并会利用这些性质证明相关结论,求某些数列和函数的极限。
掌握数列的单调有界定理,掌握数列和函数收敛的柯西收敛准则,掌握归结原则,并利用这些定理证明相关结论。
掌握两个重要极限与,并应用这两个重要极限求其它相关数列或函数的极限。
掌握无穷小量的概念,掌握无穷小量阶的比较,会应用无穷小量阶的比较证明相关结论,求相关极限;掌握大量的概念,掌握无穷大量与无穷小量之间的关系;会确定曲线的渐近线。
掌握函数(左、右)连续的概念,识别不同类型的间断点;掌握复合函数和反函数的连续性。
掌握和应用闭区间上连续函数的大、小值定理,介值定理。
掌握函数在一个区间上一致连续的概念,掌握并会应用一致连续定理。
2018年华中农业大学全日制专业硕士学位研究生招生现代经济学第一部分微观经济学类似问题答案