(1)基本运算能力:根据法则和公式正确地进行运算、处理数据。
(2)空间想象能力:形成正确的空间概念,能根据空间图形的性质,用立体图来表达简单的空间概念。
(3)数形结合能力:能绘制常用函数图形,会利用函数图像讨论或帮助理解函数的性质,初步学会用代数方法处理几何问题。
(4)分析问题和解决问题的能力:能阅读理解对问题进行陈述的材料;能综合应用所学数学知识、数学思想和方法解决问题,包括解决在相关学科、生产、生活中的数学问题,并能用数学语言正确地加以表述。
根据高等职业院校对新生文化素质的要求,依据中华人民共和国教育部2003年颁布的《普通高中数学课程标准》的必修课程的内容,确定高考数学考试内容。具体内容包括:集合、不等式、函数、三角函数、平面向量、平面解析几何、立体几何、数列等内容。
(一)代数
1.集合
理解集合的意义,理解元素与集合、集合与集合间的关系,会用有关的术语和符号正确表示一些集合。掌握交集、并集、补集的概念及运算。理解充分条件、必要条件和充要条件。
2.不等式
掌握比较实数和简单代数式值的大小的方法,理解不等式的基本性质;掌握一元一次不等式(组)、一元二次不等式、一元一次绝对值不等式的解法;了解简单分式不等式的解法。
3.函数
理解函数的定义,会求一些常见函数的定义域;理解函数的单调性和奇偶性含义,掌握其图像的特点及其简单应用,掌握二次函数的概念及图像和性质。
4.指数函数与对数函数
了解n次根式的概念,理解分数指数幂的概念,会用有理指数幂的运算法则进行有关计算;了解幂函数,理解指数函数的概念,掌握指数函数的图像、性质及简单应用;理解对数的定义,会利用对数的性质、运算法则、恒等式等进行计算;理解对数函数的概念,掌握对数函数的图像、性质及简单应用。
5.平面向量
了解向量的概念,掌握向量的加、减法运算和数乘向量的运算;理解向量的内积与运算法则;掌握向量的直角坐标运算,掌握两个向量平行、垂直的充要条件。
6.数列
了解数列的概念、通项公式,理解等差数列、等差中项和等比数列、等比中项的定义,掌握等差数列、等比数列的通项公式及前n项和公式,并能运用公式解决简单的问题。
(二)三角
理解角的推广和弧度制的概念,会进行弧度与角度的换算;理解任意角的正弦、余弦、正切的定义,熟记特殊角的正弦、余弦、正切的值和三角函数在各象限内的符号,掌握同角三角函数的基本关系式和诱导公式,能运用公式进行简单的三角函数式的化简、求值和恒等式证明;掌握两角和与差的正弦、余弦公式,掌握二倍角公式,了解两角和与差的正切公式;掌握正弦函数的图像和性质,了解余弦函数图像和性质;掌握正弦型函数的图像;会利用已知三角函数值求指定区间内的角度,并能用符号arcsinx、arccosx、arctanx表示;理解正弦、余弦定理并能进行简单的应用。
(三)几何
2018年德州职业技术学院单独招生数学考试大纲(春季高考类)集合类似问题答案