中职对口生。
2017年单独招生考试数学考试大纲
考察考生数学基础知识、基本技能和基本数学思想方法的掌握水平,着重考察考生应用数学进行探究、解决实际问题的基本能力。
一、命题原则
1.对数学基础知识的考察,贴近中职教学实际,符合职业教育的要求,覆盖高中全面知识,突出重点。
2.对数学基本能力的考察,结合考生应用数学知识分析问题、解决问题的过程进行。
3.命题体现新教材的基本理念和教学目标,力求科学、准确、公平、规范,试卷应有较高的信度、效度和必要的区分度。
二、考试内容及要求
根据高职院校对新生文化素质的要求,依据中华人民共和国教育部颁布的《中等职业学校数学教学大纲》的基础模块必修课程,确定高职招考的考试内容。数学科的考试,应注重考察考生对所学相关的基础知识、基本技能的掌握程度,注重考察考生运用所学知识分析解决实际问题的能力,全面反映知识与技能、过程与方法等课程培养目标。
(一)集合
1.理解集合的概念、元素与集合的关系。
2.掌握集合的表示方法、常用数集的符号表示,能灵活地用列举法或描述法表示具体集合。
3.掌握集合间的关系(子集、真子集、相等),能分清子集与真子集的联系与区别,分清集合间的三种关系和对应的符号;能准确应用“元素与集合关系”和“集合与集合关系”符号。
4.理解集合的运算(交集、并集、补集),能熟练地进行集合的交、并、补运算,会借助数轴进行不等式形式的集合运算。
5.了解充要条件,能正确区分一些简单的“充分”、“必要”、“充要”条件实例。
(二)不等式
1.了解不等式的基本性质,掌握不等式的三条性质,会根据不等式性质解一元一次不等式。
2.掌握区间的基本概念,能熟练写出九种区间所表示的集合意义,能直接应用区间进行集合的交、并、补运算,能将不等式的解集用区间形式表示。
3.掌握利用二次函数图像解一元二次不等式的方法,能根据二次函数的图像写出对应的一元二次方程的解和一元二次不等式的解集。
4.了解含绝对值的一元一次不等式的解法,会解简单的含绝对值的一元一次不等式。
(三)函数
1.理解函数的概念,会求简单函数的定义域、函数值和值域。
2.理解函数的三种表示法,会根据题意写出函数的解析式,列出函数的表格,能通过描点法作出函数图像。
3.理解函数单调性的定义,能根据函数图像写出函数的定义域、值域、大值、小值和单调区间;理解函数奇偶性的定义,能根据定义和图像判断函数的奇偶性。
4.理解函数的简单应用,会根据简单的函数的解析式写出函数的定义域、函数值、作出图像,并能用函数观点解决简单的实际问题。
(四)指数函数与对数函数
1.了解实数指数幂,理解有理指数幂的概念及其运算法则,能对根式形式和分数指数幂形式进行熟练转化,能熟练运用实数指数幂及其运算法则计算和化简式子。
2.了解幂函数的概念,会从简单函数中辨别出幂函数。
3.理解指数函数的概念、图像与性质,掌握指数函数的一般形式并举例,能根据图像掌握指数函数的性质。
4.理解对数的概念并能区别常用对数和自然对数,掌握对数的性质,能运用指数式和对数式的互化解决简单的相关问题。
5.了解积、商、幂的对数运算法则,记住积、商、幂的对数运算法则并能在简化运算中应用。
6.了解对数函数的概念、图像和性质,能举出简单的对数函数例子,会描述对数函数的图像和性质。
7.了解指数函数和对数函数的实际应用,能应用指数函数、对数函数的性质解决简单的实际应用题。
(五)三角函数
1.了解任意角的概念,能陈述正角、负角、零角的规定,对所给角能判断它是象限角还是界限角,能根据终边相同角的定义写出终边相同角的集合和规定范围内的角。
2.理解弧度制概念,能熟练地进行角度和弧度的换算。
3.理解任意角的正弦函数、余弦函数和正切函数的概念,会根据概念理解这三种函数的定义域,判别各象限角的三角函数值(正弦函数、余弦函数、正切函数)正负;会求界限角的三角函数值(正弦函数、余弦函数、正切函数)。
4.理解同角三角函数的基本关系式:会利用这两个基本关系式进行计算、化简、证明。
5.了解诱导公式:弦、余弦和正切公式,并会应用这三类公式进行简单计算、化简或证明。
6.了解正弦函数的图像和性质,能用“五点法”作出正弦函数的图像,并根据图像写出正弦函数的性质。
7.了解余弦函数的图像和性质,能根据余弦函数图像说出余弦函数的性质。
8.了解已知三角函数值求指定范围内的角。
(六)数列
1.了解数列的概念,发现数列的变化规律,并写出通项公式。
2.理解等差数列的定义,通项公式,前n项和公式,会利用已知公式中的三个量求第四个量的计算。
3.理解等比数列的定义,通项公式,前n项和公式,会利用已知公式中的三个量求第四个量的计算。
4.理解数列实际应用。在具体的问题情境中,会识别数列的等差关系或等比关系,并能用有关知识解决相应简单问题。
(七)平面向量
1.了解平面向量的概念,能利用平面中的向量(图形)分析有关概念。
2.理解平面向量的加、减、数乘运算,会利用平行四边形法则、三角形法则和数乘运算法则进行有关运算。
3.了解平面向量的坐标表示,会用向量的坐标进行向量的线性运算、判断向量是否共线。
4.了解平面向量的内积,理解用坐标表示内积、用坐标表示向量的垂直关系。 (八)直线和圆的方程
1.掌握两点间距离公式及中点公式。
2.理解直线的倾斜角与斜率,能利用斜率公式进行倾斜角和斜率的计算。
3.掌握直线的点斜式方程和斜截式方程,能灵活应用这两种方程进行直线的有关计算。
4.理解直线的一般式方程,掌握直线几种形式方程的相互转化,会由一般式方程求直线的斜率。
5.熟练掌握两条相交直线交点的求法,会判断两条直线的位置关系。
6.理解两条直线平行的条件,会求过一已知点且与一已知直线平行的直线方程。