半导体器件与物理、稀土发光与显示 这两个研究方向是物理学中重要、丰富和活跃的分支学科凝聚态物理学下的研究方向,凝聚态物理学在诸如半导体、磁学、超导体等许多学科领域中的重大成就已在当代高新科学技术领域中起着关键性作用,为发展新材料、新器件和新工艺提供了科学基础。前沿研究热点层出不穷,新兴交叉分支学科不断出现,是凝聚态物理学科的一个重要特点;与生产实践密切联系是它的另一重要特点。
研究方向主要针对具备广泛应用背景的功能陶瓷材料,研究其结构与性能关联,特别是合成过程中的微结构与相变情况,探索性质可控的合成途径。研究低维纳米尺度无机材料的结构与性能关系,通过调控结构与性能所涉及的科学和技术问题,研究光电信息转换、显示器件与稀磁半导体中的基本物理问题,探索开发光电信息转换器件与系统的实用技术,围绕国民经济所需要的光电新材料,与材料科学、物理、化学以及工程学科交叉,平行开展应用基础研究。许多研究课题经常同时兼有基础研究和开发应用研究的性质,研究成果可望迅速转化为生产力。
开设的主要课程:量子力学Ⅱ、固体物理Ⅱ、发光物理、显示技术、光电子学、群论、光谱学、纳米结构材料与器件、有机半导体、固体材料化学、现代实验技术、凝聚态物理中的前沿问题、微弱信号检测。
本专业学制为3年,授理学硕士学位。
080201机械制造及其自动化
研究方向:1、先进机械装备设计及加工技术
半导体器件与物理、稀土发光与显示 这两个研究方向是物理学中重要、丰富和活跃的分支学科凝聚态物理学下的研究方向,凝聚态物理学在诸如半导体、磁学、超导体等许多学科领域中的重大成就已在当代高新科学技术领域中起着关键性作用,为发展新材料、新器件和新工艺提供了科学基础。前沿研究热点层出不穷,新兴交叉分支学科不断出现,是凝聚态物理学科的一个重要特点;与生产实践密切联系是它的另一重要特点。
研究方向主要针对具备广泛应用背景的功能陶瓷材料,研究其结构与性能关联,特别是合成过程中的微结构与相变情况,探索性质可控的合成途径。研究低维纳米尺度无机材料的结构与性能关系,通过调控结构与性能所涉及的科学和技术问题,研究光电信息转换、显示器件与稀磁半导体中的基本物理问题,探索开发光电信息转换器件与系统的实用技术,围绕国民经济所需要的光电新材料,与材料科学、物理、化学以及工程学科交叉,平行开展应用基础研究。许多研究课题经常同时兼有基础研究和开发应用研究的性质,研究成果可望迅速转化为生产力。
开设的主要课程:量子力学Ⅱ、固体物理Ⅱ、发光物理、显示技术、光电子学、群论、光谱学、纳米结构材料与器件、有机半导体、固体材料化学、现代实验技术、凝聚态物理中的前沿问题、微弱信号检测。
本专业学制为3年,授理学硕士学位。
080201机械制造及其自动化
研究方向:1、先进机械装备设计及加工技术
半导体器件与物理、稀土发光与显示 这两个研究方向是物理学中重要、丰富和活跃的分支学科凝聚态物理学下的研究方向,凝聚态物理学在诸如半导体、磁学、超导体等许多学科领域中的重大成就已在当代高新科学技术领域中起着关键性作用,为发展新材料、新器件和新工艺提供了科学基础。前沿研究热点层出不穷,新兴交叉分支学科不断出现,是凝聚态物理学科的一个重要特点;与生产实践密切联系是它的另一重要特点。
研究方向主要针对具备广泛应用背景的功能陶瓷材料,研究其结构与性能关联,特别是合成过程中的微结构与相变情况,探索性质可控的合成途径。研究低维纳米尺度无机材料的结构与性能关系,通过调控结构与性能所涉及的科学和技术问题,研究光电信息转换、显示器件与稀磁半导体中的基本物理问题,探索开发光电信息转换器件与系统的实用技术,围绕国民经济所需要的光电新材料,与材料科学、物理、化学以及工程学科交叉,平行开展应用基础研究。许多研究课题经常同时兼有基础研究和开发应用研究的性质,研究成果可望迅速转化为生产力。
开设的主要课程:量子力学Ⅱ、固体物理Ⅱ、发光物理、显示技术、光电子学、群论、光谱学、纳米结构材料与器件、有机半导体、固体材料化学、现代实验技术、凝聚态物理中的前沿问题、微弱信号检测。
本专业学制为3年,授理学硕士学位。
080201机械制造及其自动化
研究方向:1、先进机械装备设计及加工技术
半导体器件与物理、稀土发光与显示 这两个研究方向是物理学中重要、丰富和活跃的分支学科凝聚态物理学下的研究方向,凝聚态物理学在诸如半导体、磁学、超导体等许多学科领域中的重大成就已在当代高新科学技术领域中起着关键性作用,为发展新材料、新器件和新工艺提供了科学基础。前沿研究热点层出不穷,新兴交叉分支学科不断出现,是凝聚态物理学科的一个重要特点;与生产实践密切联系是它的另一重要特点。
研究方向主要针对具备广泛应用背景的功能陶瓷材料,研究其结构与性能关联,特别是合成过程中的微结构与相变情况,探索性质可控的合成途径。研究低维纳米尺度无机材料的结构与性能关系,通过调控结构与性能所涉及的科学和技术问题,研究光电信息转换、显示器件与稀磁半导体中的基本物理问题,探索开发光电信息转换器件与系统的实用技术,围绕国民经济所需要的光电新材料,与材料科学、物理、化学以及工程学科交叉,平行开展应用基础研究。许多研究课题经常同时兼有基础研究和开发应用研究的性质,研究成果可望迅速转化为生产力。
开设的主要课程:量子力学Ⅱ、固体物理Ⅱ、发光物理、显示技术、光电子学、群论、光谱学、纳米结构材料与器件、有机半导体、固体材料化学、现代实验技术、凝聚态物理中的前沿问题、微弱信号检测。
本专业学制为3年,授理学硕士学位。
080201机械制造及其自动化
研究方向:1、先进机械装备设计及加工技术
半导体器件与物理、稀土发光与显示 这两个研究方向是物理学中重要、丰富和活跃的分支学科凝聚态物理学下的研究方向,凝聚态物理学在诸如半导体、磁学、超导体等许多学科领域中的重大成就已在当代高新科学技术领域中起着关键性作用,为发展新材料、新器件和新工艺提供了科学基础。前沿研究热点层出不穷,新兴交叉分支学科不断出现,是凝聚态物理学科的一个重要特点;与生产实践密切联系是它的另一重要特点。
研究方向主要针对具备广泛应用背景的功能陶瓷材料,研究其结构与性能关联,特别是合成过程中的微结构与相变情况,探索性质可控的合成途径。研究低维纳米尺度无机材料的结构与性能关系,通过调控结构与性能所涉及的科学和技术问题,研究光电信息转换、显示器件与稀磁半导体中的基本物理问题,探索开发光电信息转换器件与系统的实用技术,围绕国民经济所需要的光电新材料,与材料科学、物理、化学以及工程学科交叉,平行开展应用基础研究。许多研究课题经常同时兼有基础研究和开发应用研究的性质,研究成果可望迅速转化为生产力。
开设的主要课程:量子力学Ⅱ、固体物理Ⅱ、发光物理、显示技术、光电子学、群论、光谱学、纳米结构材料与器件、有机半导体、固体材料化学、现代实验技术、凝聚态物理中的前沿问题、微弱信号检测。
本专业学制为3年,授理学硕士学位。
080201机械制造及其自动化
研究方向:1、先进机械装备设计及加工技术
2016年天津理工大学研究生院硕士研究生招生稀土发光与显示类似问题答案