(一) 函数
1、 知识范围
(1) 函数的概念
函数的定义 函数的表示法 分段函数
(2) 函数的简单性质
单调性 奇偶性 有界性 周期性
(3) 函数的四则运算与复合运算
(4) 基本初等函数
幂函数 指数函数 对数函数 三角函数 反三角函数
(5) 初等函数
2、 要求
(1) 理解函数的概念;会求函数的定义域、表达式及函数值;会求分段函数的定义域及函数值。
(2) 理解和掌握函数的单调性、奇偶性、有界性和周期性,会判断所给函数的类别。
(3) 理解和掌握函数的四则运算与复合运算,熟练掌握复合函数的复合过程。
(4) 掌握基本初等函数的简单性质。
(5) 了解初等函数的概念。
(6) 会建立简单实际问题的函数关系式。
(二) 极限
1、 知识范围
(1) 数列极限的概念
数列 数列极限的定义
(2) 数列极限的性质
唯一性 有界性 四则运算法则
(3) 函数极限的概念
函数在一点处极限的定义 左、右极限及其与极限的关系 x趋于无穷时函数的极限
(4) 函数极限的定理
唯一性定理 四则运算法则
(5) 无穷小量和无穷大量
无穷小与无穷大的定义 无穷小与无穷大的关系 无穷小与无穷大的性质 两个无穷小量阶的比较 无穷小的等价代换
(6) 两个重要极限,
2、 要求
(1) 理解极限的概念(只要求极限的描述性定义),能根据极限概念描述函数的变化趋势。了解函数在一点处极限存在的充分必要条件,会求函数在一点处的左极限与右极限。
(2) 了解极限的唯一性、有界性和保号性等相关性质,掌握极限的四则运算法则。
(3) 理解无穷小量、无穷大量的概念,掌握无穷小量的性质,无穷小量与无穷大量的关系。会比较无穷小量的阶(高阶、低阶、同阶和等价)。会运用等价无穷小量替换求极限。
(4) 熟练掌握用两个重要极限求极限的方法。
(三) 连续
1、 知识范围
(1) 函数连续的概念
函数在一点连续的定义 左连续和右连续 函数在一点连续的充要条件 函数的间断点及其分类
(2) 函数在一点处连续的性质
连续函数的四则运算 复合函数的连续性
(3) 初等函数的连续性
2、 要求
(1) 理解函数在一点处连续与间断的概念,掌握判断简单函数(含分段函数)在一点处的连续性,理解函数在一点处连续与函数在该点处极限存在的关系。
(2) 会求函数的间断点。
(3) 理解初等函数在其定义区间上的连续性,并会利用连续性求极限。
2016年景德镇学院专升本高等数学考试大纲函数、极限和连续类似问题答案