专业类培养特色:物理专业类培养采用重基础、重通识,兴趣引导型培养模式,为国家未来发展储备创新主导型科技人才。
专业类培养面向:学生入学后实行按物理专业类厚基础、宽口径培养,第5学期后进入分专业培养阶段。本专业类主要面向的专业包括:物理学、光电信息科学与工程、应用物理、核物理。
1.物理学专业
培养目标:培养适应新时代中国特色社会主义建设和发展需要的,具有良好科学素养和创新精神的,系统扎实地掌握物理学基础理论和基本实验方法,具备一定的基础科学研究能力和应用开发能力的高级专门人才。
学生毕业后可在物理学或相关学科领域继续深造,或在物理学或相关的科学技术领域从事教学科学研究和相关管理工作。本专业毕业生在物理学或相关专业领域经过五年的实践锻炼,能够初步具备坚实宽广的基础理论和系统深入的专门知识、独立从事科学研究和教学工作、组织解决重大实际问题的能力和优秀综合素养,预期能做出创造性成果的高层次人才。
专业特色及专业方向:专业特色:本专业采用多样化、个性化的培养模式,学生可以在老师的指导下根据自己的兴趣和爱好选择宽基础和纯粹物理型或应用物理型等课程体系,学生主要学习必需的数学、物理基础知识,加强实验能力和创新能力的训练,注意培养理论分析和技术应用的能力,培养在基础理论和应用研究领域的物理专门化人才。专业方向:凝聚态物理(固体物理和磁学)、理论物理、声学与微波物理、原子与分子物理。
主要课程:基础课程:物理学导论I、新生研讨课、力学、热学、电磁学、光学、原子物理、电子线路、理论力学、热力学与统计物理、电动力学、量子力学I、固体物理I、数学物理方法I-II。专业课程:量子力学II、固体物理II、磁性物理基础、固体物理实验、原子结构、原子分子光谱、弹性动力学、微波原理与技术、计算物理、计算物理实验、信号与系统、声学实验。实验课程:普通物理实验I-III、电子线路实验、近代物理实验I。主要实践性教学环节:毕业论文。
就业方向:毕业后在高等院校、国防部门、企业单位、科研机构等从事教学、科学研究、技术开发推广及相关管理工作。
2.光电信息科学与工程专业
培养目标:培养适应社会主义现代化建设和未来社会与科技发展需要的,德智体美全面和谐发展与健康个性相统一,富有良知和社会责任感,具有创新精神、实践能力和国际视野,具备扎实的物理知识基础,掌握激光、光电子及光通讯等基础理论,具备光、机、电、算一体化系统设计及多学科知识应用的综合实践能力的高级创新人才。
学生毕业后可在相关学科领域继续深造,或在光学、光电子学及相关电子信息科学、计算机科学等领域从事教学、研究、开发和管理等工作。本专业毕业生在光电信息科学与工程和相关专业领域经过五年的实践锻炼,能够初步具备光电领域的前沿知识、独立研发能力和良好科学素养,预期能够胜任教学、研发、管理等业务岗位工作。
专业特色及专业方向:本专业学生主要学习必需的数学、计算机、物理基础知识,同时还要学习光电信息科学与工程专业方向的专门知识,加强实验能力和创新能力的训练,注意培养理论分析和技术应用的能力。为了实现这一目标,本专业在重视传统光学知识讲授的同时,还强调将科研成果及时转化为教学内容,向学生介绍光电信息科学与工程领域的新研究进展,学生受到科学研究和工程技术应用的初步训练,培养出良好的科学素养。专业方向:量子光学,非线性光学,激光光谱学,激光应用。
主要课程:基础课程:力学、热学、电磁学、光学、原子物理、电子线路、理论力学、热力学与统计物理、电动力学、量子力学I、固体物理I、数学物理方法I-II。专业课程:激光原理、光通讯原理、光电子学。实验课程:普通物理实验I-III、电子线路实验、近代物理实验I。主要实践性教学环节:毕业论文。
就业方向:毕业后在基础光学、应用光学、光电子学及相关的电子信息科学、计算机科学等领域(特别是光机电算一体化产业)从事科学研究、教学、产品设计、生产技术或管理工作。
3.核物理专业
培养目标:培养适应社会主义现代化建设和未来社会与科技发展需要的,德智体美全面和谐发展与健康个性相统一,富有良知和社会责任感,具有创新精神、实践能力和国际视野,具备物理学知识基础,核物理学基础理论知识和熟练的实验技能,具备核技术应用能力的高级核物理学专门人才。
学生毕业后可在相关学科领域继续深造,或在核物理学等领域从事科学研究、技术开发、教学和相关管理等工作。本专业毕业生在核科学专业领域经过五年的实践锻炼,能够初步具备和掌握核物理及核技术的基础和前沿知识、核科技研发的基本能力和从事科学研究良好的科学素养,预期能够胜任核物理及核科学领域的教学、科研、管理等业务岗位工作。
专业特色及专业方向:专业特色:物理基础宽厚扎实、实验实践技能优秀,在传统核物理专业教学基础上,在核结构、核技术、中子物理、核探测、核材料及新能源开发等几个方面开展培养工作,培养出适应性强、技术全面、理工兼备的高素质核物理及核科学的专门化人才。专业方向:1)核结构(培养内容:核理论、核模型、核谱学、核数据评价与测量等);2)核技术(培养内容:核电子学、核探测器、辐射防护、中子物理与反应堆技术、核电池、放射性测量与治理、辐照技术、射线与物质相互作用等)。
主要课程:基础课程:力学、热学、电磁学、光学、原子物理、电子线路、理论力学、热力学与统计物理、电动力学、量子力学I、固体物理I、数学物理方法I-II。专业课程:原子核物理学、核物理实验方法理论及核物理实验、核电子学及模拟实验、辐射防护与核安全、核技术基础。实验课程:普通物理实验I-III、电子线路实验、近代物理实验I。主要实践性教学环节:毕业论文。
就业方向:毕业后在工业、农业、国防、医学、环保及相关领域从事核科学相关的基础研究、应用研究、教学、及管理工作。
4.应用物理学专业
培养目标:培养适应社会主义现代化建设和未来社会与科技发展需要的,德智体美全面和谐发展与健康个性相统一,富有良知和社会责任感,具有创新精神、实践能力和国际视野,具备物理学知识基础,掌握现代电子技术理论,具备技术应用能力的高级应用物理专业人才。
学生毕业后可在相关学科领域继续深造,或在物理学或相关科学领域从事应用研究、技术开发、教学和管理工作。本专业毕业生在应用物理学专业领域经过五年的实践锻炼,能够初步具备现代电力电子技术、计算机原理及软、硬件基本原理知识、应用基础及应用开发研究能力和良好科学素养,预期能够胜任科研、教学等业务岗位工作。
专业特色及专业方向:专业特色:掌握物理、电子和计算机的宽厚知识,培养创新精神、实践能力和国际化的视野。学生主要学习必需的数学、物理、电子和计算机基础理论,加强实验能力和创新能力的培养,注意创新能力和应用开发研究的训练,培养在应用技术研究领域的专门化人才。专业方向:电磁传感器与电磁信号转换研究,智能仪器技术研究,电磁计量方法及仪器研究,汽车机电和电子设备研制,非传统能源物理与环保技术,纳米材料的制备与应用。
主要课程:基础课程:力学、热学、电磁学、光学、原子物理、电子线路、理论力学、热力学与统计物理、电动力学、量子力学I、固体物理I、数学物理方法I-II。专业课程:传感器原理与应用、嵌入式系统与应用、现代电力电子技术基础。实验课程:普通物理实验I-III、电子线路实验、近代物理实验I。主要实践性教学环节:毕业论文。
就业方向:毕业到各种与新技术有关的科研机构、产业部门、技术开发部门、高等院校等从事应用研究、技术开发、教学和有关管理工作。
微信扫一扫
咨询技校问题
微信扫码
咨询技校问题
①由于各方面不确定的因素,有可能原文内容调整与变化,本网如不能及时更新或与相关部门不一致,请网友以权威部门公布的正式信息为准。
②本站注明稿件来源为其他媒体的文/图等稿件均为转载稿,本站转载出于非商业性的教育和科研之目的,并不意味着赞同其观点或证实其内容的真实性。
③本网转载的文/图等稿件出于非商业性目的,如转载稿涉及版权及个人隐私等问题,请作者在两周内邮件联系。