2014年单独招生数学考试大纲(春季高考类)
一、考试性质
单独招生是国家授权高职院校独立组织考试录取的一种方式,是合格的高中毕业生和具有同等学历的考生参加的选拔性考试。我院根据考生成绩,德、智、体全面衡量.择优录取.
二、考试内容
(一)考试目标及要求
1.知识要求
(1)了解知识的含义及其简单应用。
(2)理解知识的概念和规律(定义、定理、法则等)以及与其他相关知识的联系。
(3)掌握并能够应用知识的概念、定义、定理、法则去解决一些综合性数学问题和实际问题。
2.能力要求
(1)基本运算能力:根据法则和公式正确地进行运算、处理数据。
(2)空间想象能力:形成正确的空间概念,能根据空间图形的性质,用立体图来表达简单的空间概念。
(3)数形结合能力:能绘制常用函数图形,会利用函数图像讨论或帮助理解函数的性质,初步学会用代数方法处理几何问题。
(4)简单实际应用能力:会解决带有实际意义的简单数学问题,会把相关学科、生产或生活中的一些简单问题转化为数学问题,并予以解决。
(5)思维能力:具有初步的分析、比较、综合、推理能力,应用数学概念和方法辨明数学关系,形成良好的逻辑思维习惯。
(二)、考试内容及要点
根据高等职业院校对新生文化素质的要求,依据中华人民共和国教育部2003年颁布的《普通高中数学课程标准》的必修课程的内容,确定高考数学考试内容。具体内容包括:集合、不等式、函数、三角函数、平面向量、平面解析几何、立体几何、数列等内容。
(一)函数(60%)
1.集合
理解集合的意义,理解元素与集合、集合与集合间的关系,会用有关的术语和符号正确表示一些集合。掌握交集、并集、补集的概念及运算。
理解充要条件的意义。
2.不等式
掌握实数大小的基本性质和不等式的性质,掌握一元二次不等式、绝对值不等式解法,了解对数不等式和指数不等式的解法,会解一些简单的不等式并正确表示其解集。
3.函数
理解函数的定义,会求一些常见函数的定义域;理解函数的单调性和奇偶性含义,掌握其图像的特点及其简单应用,掌握二次函数的概念及图像和性质。
4.指数函数与对数函数
了解n次根式的概念,理解分数指数幂的概念,会用有理指数幂的运算法则进行有关计算;了解幂函数,理解指数函数的概念,掌握指数函数的图像、性质及简单应用;理解对数的定义,会利用对数的性质、运算法则、恒等式等进行计算;理解对数函数的概念,掌握对数函数的图像、性质及简单应用。
5.三角函数
理解角的推广和弧度制的概念,会进行弧度与角度的换算;理解任意角的正弦、余弦、正切的定义,熟记特殊角的正弦、余弦、正切的值和三角函数在各象限内的符号,掌握同角三角函数的基本关系式和诱导公式,能运用公式进行简单的三角函数式的化简、求值和恒等式证明;掌握两角和与差的正弦、余弦公式,掌握二倍角公式,了解两角和与差的正切公式;掌握正弦函数的图像和性质,了解余弦函数图像和性质;掌握正弦型函数的图像及其应用;会利用已知三角函数值求指定区间内的角度,并能用符号arcsinx、arccosx、arctanx表示;理解正弦、余弦定理并能进行简单的应用。
(二)平面向量(10%)
了解向量的概念,掌握向量的加、减法运算和数乘向量的运算。理解向量的内积与运算法则。掌握向量的直角坐标运算,掌握两个向量平行、垂直的充要条件。
(三)几何(20%)
1.解析几何
掌握中点公式和两点间的距离公式,理解直线的倾斜角、斜率和截距的概念,掌握已知两点坐标求斜率的公式,理解直线方程的斜截式、点斜式和一般式,了解直线的方向向量和法向量,理解两条直线平行与垂直的条件,会求点到直线的距离、两条平行直线间的距离,
掌握两条相交直线的交点解法。掌握圆的方程并能进行简单的应用;理解椭圆、双曲线的定义和标准方程,了解椭圆、双曲线的性质和图像;理解抛物线的定义和标准方程,掌握抛物线的性质和图像。
2.立体几何
理解平面的基本性质,了解空间两条直线的位置关系、异面直线所成的角;了解直线与平面平行、垂直的判定和性质,了解直线与平面所成的角,理解三垂线定理;了解两平面平行的判定和性质,理解二面角与平面角,了解两平面相互垂直的判定和性质;了解简单多面体和旋转体的有关概念、结构特征和性质。
(四).数列(10%)
了解数列的概念、通项公式,理解等差数列、等差中项和等比数列、等比中项的定义,掌握等差数列、等比数列的通项公式及前n项和公式,并能运用公式解决简单的问题。
三、考试形式与试卷结构
1.考试形式
闭卷,笔答。考试时间为90分钟,试卷满分200分。
2.题型结构
分单项选择题、填空题、解答题三大题型。
3.试题难易比例结构
易∶较易∶较难∶难=5∶3∶1∶1。
原标题:2014年德州职业技术学院单独招生数学考试大纲(春季高考类)